Cumartesi

Karekoklu sayilar nedir tanimi ozellikleri konu anlatimi toplama cikarma carpma bolme islemler ornek sorular ve cozumleri

KAREKÖKLÜ SAYILAR (şapkalı sayılar)


Rasyonel sayılar kümesi sayı ekseninde sık olmasına rağmen sayı eksenini tam dolduramamaktadır;çünkü sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel olmayan sayılar da vardır.
Karesi 2 olan c doğal sayısını ele alalım.

a2 = 2 ise a sayısını a = Ö2  şeklinde gösterebilir ve ‘karekök iki ‘diye okuyabiliriz.Acaba bu Ö2
sayısı hangi sayılar arasındadır?Bunu inceleyelim:
12 =1 1=1
(1,5)2 = 1,5 1,5=2.25 tir
O halde Ö2 sayısı;1< Ö2 <1,5
Buna göre Ö2 sayısı 1 ile 1,5 arasındadır,sayı doğrusu üzerinde görüntüsü olduğu halde rasyonel sayı değildir;çünkü iki tam sayının bölümü şeklinde yazılamaz.
İşte sayı ekseni üzerinde  görüntüsü  olduğu halde,rasyonel olmayan  Ö2,  Ö5 , p , gibi sayılara irrasyonel(rasyonel olmayan) sayılar denir.I ile gösterilir.
İrrasyonel sayılar kümesi ile rasyonel sayılar kümesinin birleşim kümesinin birleşim kümesine de reel (gerçek) sayılar denir.
     
 R=Q U I        Q ∩ I =O 
N  Z Q R         I R

R+=Pozitif  reel sayılar
R-=Negatif reel sayılar
R= R- U {0} U R+  

Reel sayılar sayı eksenini tamamen doldurur.Sayı doğrusunda her noktaya bir reel sayı karşı gelir,yani sayı doğrusu ile reel sayılar kümesi bire bir eşlenebilir.

a  bir  pozitif reel sayı olmak üzere; Öa  = b ifadesine kareköklü ifade denir.
a bir gerçek(reel) sayı ve m ,1 den büyük  bir tamsayı ise mÖa  sayısına ,a sayısının m inci kuvvetten kökü denir.m sayısına  da kökün derecesi denir.

Öa da, kök derecesi 2 dir.



























































Hiç yorum yok:

Yorum Gönder

LinkWithin

Related Posts with Thumbnails
 
 
 
 
Copyright © Haber Keyfim